Polyhedral Realization of the Highest Weight Crystals for Generalized Kac-moody Algebras
نویسنده
چکیده
In this paper, we give a polyhedral realization of the highest weight crystals B(λ) associated with the highest weight modules V (λ) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster algebras.
منابع مشابه
Polyhedral Realization of Crystal Bases for Generalized Kac-moody Algebras
In this paper, we give polyhedral realization of the crystal B(∞) of U− q (g) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of rank 2, 3 and Monster Lie algebras. Introduction In his study of Conway and Norton’s Moonshine Conjecture [3] for the infinite dimensional Z-graded representation V ♮ of the Mons...
متن کاملPolyhedral Realizations of Crystal Bases and Braid-type Isomorphisms
In [5],[6], Kashiwara introduced the theory of crystal base. He has shown that the existence of crystal base for the subalgebra U q (g) of the given quantum algebra Uq(g) and arbitrary integrable highest weight Uq(g)-modules. It is a fundamental problem to present a concerete realization of crystal bases for given integrable highest weight modules as explicitly as possible. Up to the present ti...
متن کامل6 Generalized Kac - Moody Lie Algebras and Product Quivers
We construct the entire generalized Kac-Moody Lie algebra as a quotient of the positive part of another generalized Kac-Moody Lie algebra. The positive part of a generalized Kac-Moody Lie algebra can be constructed from representations of quivers using Ringel's Hall algebra construction. Thus we give a direct realization of the entire generalized Kac-Moody Lie algebra. This idea arises from the...
متن کاملAbstract Crystals for Quantum Generalized Kac-moody Algebras
In this paper, we introduce the notion of abstract crystals for quantum generalized Kac-Moody algebras and study their fundamental properties. We then prove the crystal embedding theorem and give a characterization of the crystals B(∞) and B(λ). Introduction The purpose of this paper is to develop the theory of abstract crystals for quantum generalized Kac-Moody algebras. In [6], the third auth...
متن کاملCrystal Bases and Monomials for Uq(G2)-modules
In this paper, we give a new realization of crystal bases for irreducible highest weight modules over Uq(G2) in terms of monomials. We also discuss the natural connection between the monomial realization and tableau realization. Introduction In 1985, the quantum groups Uq(g), which may be thought of as q-deformations of the universal enveloping algebras U(g) of Kac-Moody algebras g, were introd...
متن کامل